- » Experiences in Real Loss Assessment 10-years after implementing the ILI as decisive Key-PI in Austria
- » Joerg Koelbl, Austria <u>koelbl@bluenetworks.at</u>
- » Allan Lambert, UK <u>allanlambert@wlranda.com</u>
- This presentation was made by Joerg Koelbl at the Water Loss 2019 South East Regional Conference, 22-24 September 2019, Bucharest, Romania
- » The authors hereby confirm that they are entitled to grant this permission for copies to be made available free of charge for reading and/or downloading from the LEAKSSuite Library website.
- » 23rd September 2019

Southeast Europe Regional Conference Water Loss 2019 Sep 22-24, 2019 Bucharest, Romania

GOLD SPONSOR SEDAKM A member of Megger Group

BRONZE SPONSOR

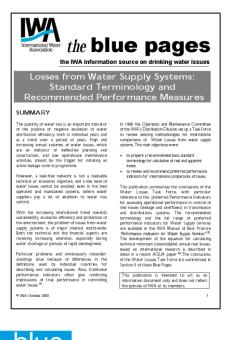
Experiences in Real Loss Assessment 10-years after implementing the ILI as decisive Key-PI in Austria

Joerg Koelbl &Allan Lambert(Austria, presenter)(UK, co-author)

Southeast Europe Regional Conference Water Loss 2019 Bucharest, 23 September 2019

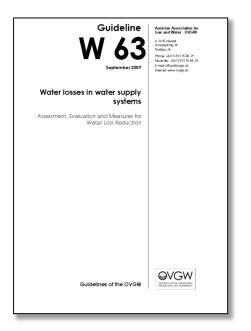
HISTORY

INFRASTRUCTURE LEAKAGE INDEX (ILI)



IWA BLUE PAGES (2000)

Losses from Water Supply Systems: Standard terminology and Recommended Performance Measures


- IWA Water Balance
- Infrastructure Leakage Index (ILI)

		Billed	Billed Metered	<u>Revenue</u>
		Authorised	Consumption	<u>Water</u>
		Consumption	(including water	
		-	exported)	
	Authorised		Billed Unmetered *	
	Consumption	M ³ /year	Consumption	M ³ /year
		Unbilled	Unbilled Metered	
		Authorised	Consumption	
		Consumption	Unbilled Unmetered	
System				
Input	M ³ /year	M ³ /year	Consumption	
Volume		Apparent	Unauthorised	-
		Losses	Consumption	
			Metering	<u>Non-</u>
	Water	M ³ /year	Inaccuracies	Revenue
	Losses	Real	Leakage on Transmission	Water**
2		Losses	and/or Distribution Mains	
M ³ /year			Leakage and Overflows	-
			at Utility's Storage Tanks	
	2		Leakage on Service	-
	M ³ /year		Connections up to point	
		M ³ /year	of Customer metering	
		•	5	M ³ /year

OVGW W 63 (2009)

Water Losses in Water Supply Systems: Assessment, Evaluation and Measures for Water Loss Reduction

- IWA Water Balance
- Clear statement against use of % as technical PI
- Infrastructure Leakage Index (ILI) as <u>decisive</u> PI
 - Best indicator in terms of considering network parameters
 - length of mains
 - number of connections
 - length of connections
 - pressure
- Class limits (A, B, C, D) same as World Bank Institute Bands (WBI)

WATER LOSS ASSESSMENT

According WBI classification scheme:

ILI	Class q _{AL}	Evaluation
till 2	Α	very little till little water losses, further reduction could be counter productive; further analysis before any action should be executed.
2 to 4	В	medium water losses, potential for noticeable loss reduction existing, improvement in leakage control and infrastructure management.
4 to 8	с	high water losses, volume and reasons for losses have to be analyzed and attempts to reduce the volume of lost water has to be intensified.
greater than 8	D	very high water losses, volume and reasons for losses have to be analyzed, distinct leakage control and leakage reduction has to be executed immediately.

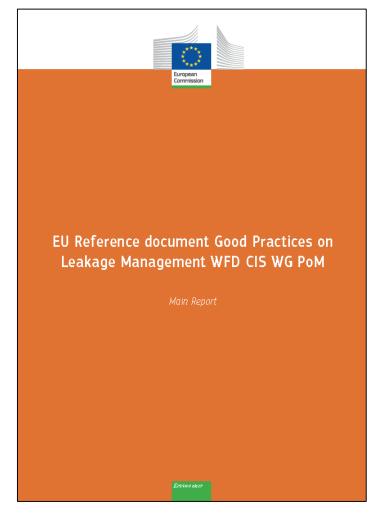
Source: OVGW W 63 (2009)

GOOD PRACTICES ON LEAKAGE MANAGEMENT WFD CIS W POM (2015)

Coordinated by

Cor Merks (ARCADIS Nederland BV)

In cooperation with


IWA Water Loss Specialist Group Institutions of EU member states

Main Report

Case Study Report

https://circabc.europa.eu/sd/a/1ddfba34-e1ce-4888-b031-6c559cb28e47/Good%20Practices%20on%20Leakage%2 0Management%20-%20Main%20Report_Final.pdf

GOOD PRACTICES ON LEAKAGE MANAGEMENT WFD CIS W POM (2015)

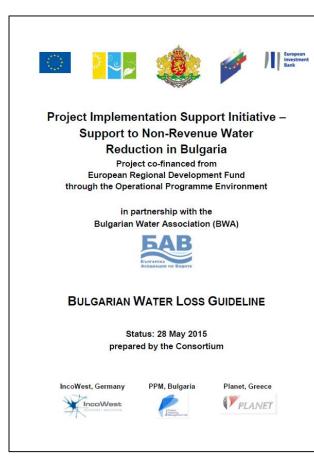

		Performance Indicator and Context Information Descriptions						
Parameter or Context Information	Units of measurement	Very Low	Low	Moderate	High	Very High		
Infrastructure Leakage Index ILI		< 1,5	1,5 to < 2,0	2,0 to < 4,0*	4,0* to < 8,0*	8* or more		
Average System Pressure	Metres	< 30	30 to < 40	40 to < 50	50 to < 60	60 or more		
Mains repairs	per 100 km/year	<7	7 to < 10	10 to < 15	15 to < 20	20 or more		
Mains - average time to repair	Days	<1	1 to < 2	2 to < 4	4 to < 8	8 or more		
Service Connection repairs	per 1000 services/year	<3	3 to < 4	4 to < 7	7 to < 10	10 or more		
Services - average time to repair	Days	<2	2 to < 4	4 to < 8	8 to < 16	16 or more		
Active Leakage Control	% checked annually	< 10%	10% to < 30%	30% to < 70%	70% to < 90%	90% or more		
Rate of Rise of Unreported Leakage	litres/service conn/day, in a year	< 20	20 to < 40	40 to < 80	80 to < 160	160 or more		
Assessed Value of leakage	Euro/m ³	< 0,10*	0,10 to < 0,25*	0,25 to < 0,50*	0,50 to < 1,00*	1,0* or more		
Use of Energy	kWhr/m³	< 0,25*	0,25 to < 0,50*	0,50 to < 1,0*	1,0 to < 2,0*	2,0* or more		
* Limits for these parameters are provisional and subject to further checking and/or review						or review		

Table 6 – Additional PIs and context indicators (Lambert et al, 2014).

BULGARIAN WATER LOSS GUIDELINE (2015)

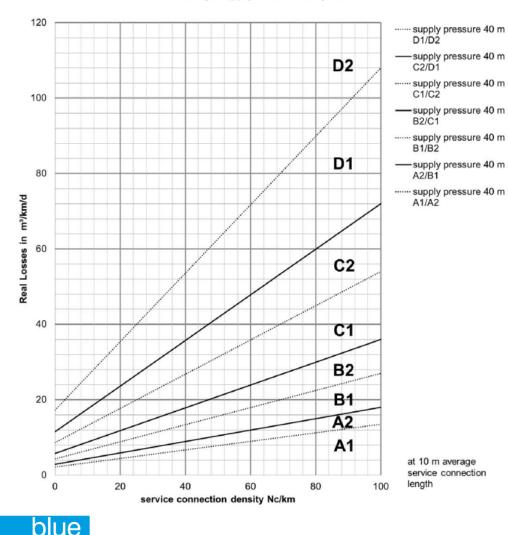
IWA Water Balance

Set of Performance Indicators for

• real loss, NRW, failure rates

ILI as decisive PI

• Low/Middle Income Country ILI range = 2 x High Income Country


ILI range	Leakage Performance Category		
Less than 3	A1		
3 to < 4	A2		
4 to < 6	B1		
6 to < 8	B2		
8 to < 12	C1		
12 to < 16	C2		
16 to < 24	D1		
24 and more	D2		

BULGARIAN WATER LOSS GUIDELINE (2015)

Quick approximate classification scheme for Real Losses per Mains Length Average Supply Pressure Range 40 m

networks

Alternative Assessment scheme for:

m³/km/d

Several graphs for different pressure ranges

GERMAN W 392 (A) & W 400-3 B1 GUIDELINES (2017)

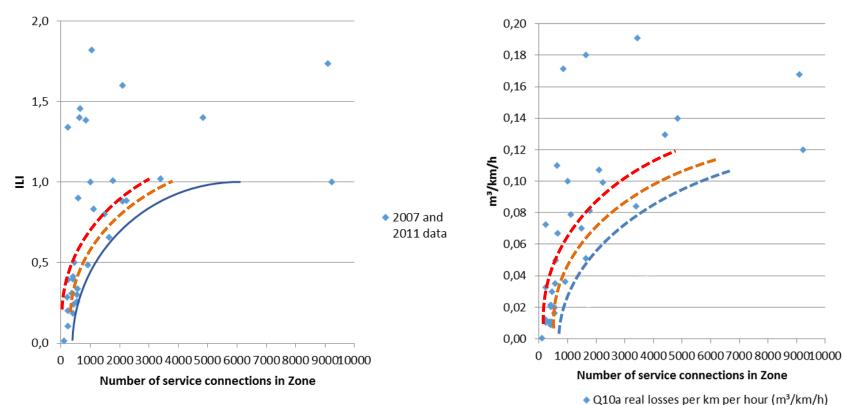
<page-header><page-header><text><text><section-header><section-header><section-header></section-header></section-header></section-header></text></text></page-header></page-header>	VASSER	President and Maintenance; Distribution Systems	IWA Water Balance Real Losses • ILI is preferred KPI • m ³ /km/h (q _{VR}) traditional ILI classification scheme in W 400-3, shows ALC interval for ILI and qvr		
Water loss according W 392 (A)	Classification	low	Failure rate (mains moderate	s) high	
ILI ≤ 2	low	selective measures	every 6 years	every 3 years	
2 < ILI ≤ 4	moderate	every 3 years	every 2 years	annually	
			comprehensive	comprehensive	

All good?

LEARNINGS FROM AUSTRIA - ILI

Still <u>limited</u> acceptance of ILI

Classification scheme for ILI works well for systems with >3000 connections


But smaller systems (<3000 service connections) can be in Band A with <u>ILI << 1.0</u> at average pressure of 50 metres ~ 90% of Austrian Utilities have < 3000 connections > 80% of these systems have < 1000 connections

Review of Austrian/UK collaboration on understanding why this occurs since 2007, and recent developments

SIZE MATTERS: DATA FROM OVGW BENCHMARKING STUDIES

2007 and 2011 data, excluding 18 ILIs > 2.0

source: Lambert, Koelbl & Fuchs-Hanusch (2014)

2007 and 2011 data

REASONS FOR LOW ILI IN SMALL SYSTEMS

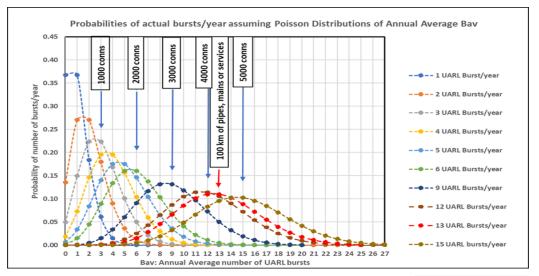
Errors when calculating UARL – lack of systematic approach to infrastructure parameters and pressure

Influence of pressure:leak flow relationships for mostly flexible pipes if pressure less than around 40 metres

Small systems (< 3000 service connections):

- » new unreported leaks quickly and easily identified from night flows, leads to <u>shorter run times</u>
- » wider confidence limits for calculated CARL
- » New research shows that for very small systems, <u>low</u> <u>UARL leak frequency distributions</u> need to be included

A POISSON DISTRIBUTION USED FOR FOOTBALL STATISTICS


Used to predict probability of occurrence of small numbers of isolated events, when only average number over several periods of time is known.

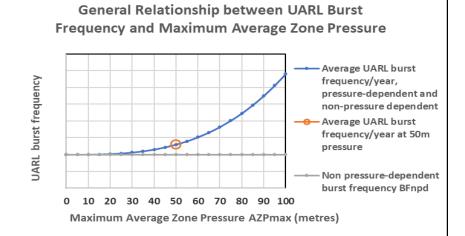
Example: goals per game in Premier League 2017-18

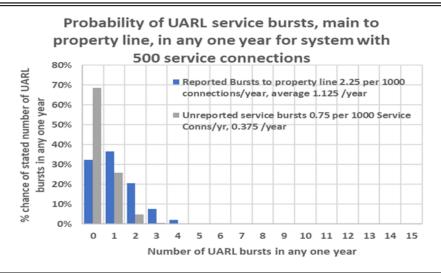
Poisson distribution has now been applied to study of low annual numbers of UARL bursts in small systems (WLR&A Ltd, 2019)

Graph shows how normal 'bellshaped' distribution becomes more skewed as system size reduces

Average Number of			Comparison of Predicted and Actual Number of Goals							
Team	Goals conceded per game		Conceded per game in a 38 game season							
			0	1	2	3	4	5		
•	A 0.71	Actual	18	16	2	1	1	0		
~		Predicted	19	13	5	1	0	0		
	B 1.00	Actual	17	12	4	3	1	1		
В		Predicted	14	14	7	2	1	0		
_	4.50	Actual	9	11	12	3	0	3		
с	1.58	Predicted	8	12	10	5	2	1		

STEPS 1, 2: REVIEW AND IMPROVE BURST FREQUENCY ASSUMPTIONS


Step 1: Modify UARL average burst frequencies at 50m pressure for actual pressure


 using international (2012) preferred practical approach to pressure:burst frequency relationships

Step 2: Interpret low numbers of UARL bursts in small systems using the median values of the 3 Poisson probability distributions

- degree of skewness increases as system size falls
- example is for UARL bursts, mains to property line, for 500 service connections

blue

17

STEPS 3 AND 4

Step 3: FAVAD: Fixed and Variable Area Discharges assumptions

- > N1 = 0.5 for rigid pipes
- > N1 = 1.5 for flexible pipes and unavoidable background leakage
- <u>Assess %s of rigid and flexible pipes</u> on mains, on services from main to property line, and on services from property line to meter

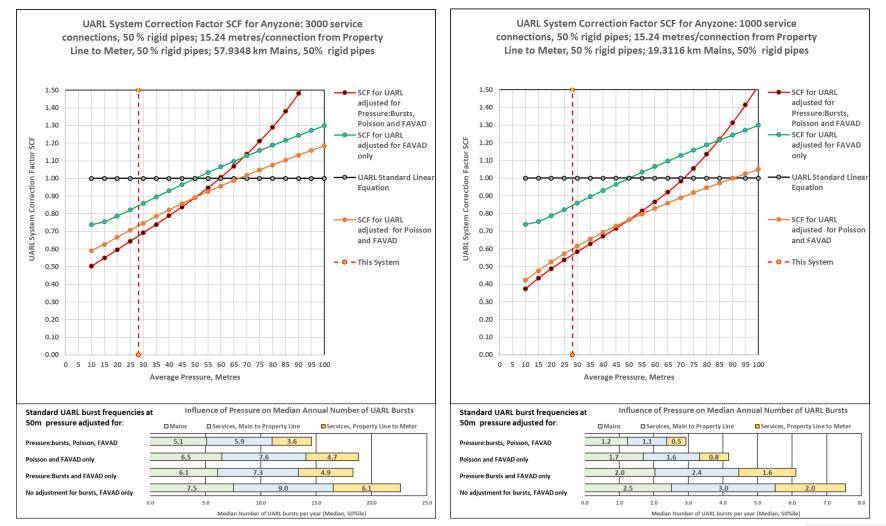
Step 4: Derive customised System Correction Factor SCF to customise standard linear UARL equation, using UARL with SCF software

UARL (litres/day) = $\underline{SCF} \times (18 \times Lm + 0.8 \times Ns + 25 \times Lp) \times P$

SCF varies with influence of pressure on 6 interacting zone-specific factors

 Presented as graphs of SCF vs average pressure, and customised UARL in m³/day vs average pressure, for any individual Zone or system, of any size

UARL WITH SCF SOFTWARE, DATA ENTRY


CALCULATION OF LIADL in North American Units with System Correction Faster SCF										
CALCULATION OF UARL in North American Units with System Correction Factor SCF										
Standard LinearUS UnitsEquations for UARLMetric		UARL (USgal/day) = SCF x (5.4 x Lm + 0.15 x Nc + 7.5 x Lc) x AZP						Lm and Lc in miles, AZP in psi		
		UARI	L (m³/day) = SCF x	(18 x Lm	+ 0.8 x Ns + 25 x L	p) x AZP/1000	Lm and Lp in km, AZP in metres		
Service Connection Help			Data Input Section					Rigid/Flexible Pipes Help		
Service connectio	mneip		Calculation by			A. Lambert	5th Aug 2019	Nigita/Ticxit		
System Data	for		Anytown Utility Anyzone				Pipe N	/laterials		
Components of Infrastructure and		and Stan	ndard Linear UARL calculations			UARL Assump	otions @ 50m	% Rigid, N1 = 0.5	% Flexible, N1 = 1.5	
Number of services	Ns, Main	USI	Jnits	Metric Units		Reported Bursts	75%	50	50	
to property line or o	curb stop	Number	3,000	3,000	Number	Unreported Bursts	25%	50	50	
Services, property Line or		ft/conn	50.0	15.2	m/conn	Reported Bursts	75%	50	50	
curb stop to meter, Length Lp		miles	28.41	45.7	km	Unreported Bursts	25%	50	50	
Mains length	l m	miles	36.00	57.9	km	Reported Bursts	95%	50	50	
Ivialits length	L111	miles	50.00	57.9		Unreported Bursts	5%	50		
Density of Connect	tions DC	per	83.3	51.8	per km	System Correction	System	System Correction	SCF using	
per length of mains		mile	05.5	51.0		Factor using linear	Correction Factor	Factor using Favad	Pressure:bursts +	
Average Zone Pressure AZP p			40.0	28.1	metres	UARL Formula	using Favad Only	+ Poisson	Poisson + FAVAD	
		P31	40.0	20.1	metres	1.00	0.84	0.73	0.67	
Unavoidable Annu	ual Real	USgalpd	34299			34299	28973	25096	23114	
Losses UARL with SC	F applied			129	m ³ /day	129	109	94	87	
Note: small differences in UARL ^ and ^ are due to rounding errors when the Metric UARL equation is converted to US Units										

© Water Loss Research and Analysis Ltd

EXAMPLE OF HOW SCF AND BURSTS REDUCE WITH SYSTEM SIZE 3000 SERVICES, 50% RIGID PIPES 1000 SERVICES, 50% RIGID PIPES

© Water Loss Research and Analysis Ltd

LEARNINGS – WATER BALANCE, PI

More and more countries are implementing the **IWA water balance** and **ILI** as decisive PI in national guidelines

Unfortunately "%" are still widely used as technical indicator

Using ILI bears risk that higher losses "hidden" in high pressure systems

- Calculate and always quote average system pressure
- Identify potentials for pressure reduction
- Cross-checks with other performance indicators
- Use ILI for the purpose it was developed for
 - Assessment and comparisons of Technical Performance in managing Real Losses between different systems with different characteristics
 - Monitoring and target setting: <u>only</u> when pressure management completed

Use m³/km/h and l/conn/d for the traditional purpose of

- Utility internal monitoring of individual systems/sub-systems
- Utility internal target setting of individual systems/sub-systems
- but not for comparisons between systems/sub-systems

LEARNINGS – SMALL SYSTEMS

Logical reasons for ILIs less than 1 in some very small systems

UARL with SCF software with Poisson and pressure:bursts can:

- calculate a customised median UARL for any individual small system (and DMA)
- be used for research into generalised SCF vs system size relationships

Thank you for your interest!

Copies of this presentation can be downloaded from:

www.bluenetworks.at

https://www.leakssuitelibrary.com/pros-abandon-percents-of-siv/

For further information on UARL with SCF software,

visit https://www.wlranda.com/software or contact info@wlranda.com

AUTHOR'S CONTACT

Dr. Joerg Koelbl Blue Networks e.U.

Roemerstraße 18 A-8430 Leibnitz/ Kaindorf Austria

koelbl@bluenetworks.at

www.bluenetworks.at

Allan Lambert WATER LOSS RESEARCH & ANALYSIS LTD

Gemini House, 1 Roydlands Terrace, Halifax, HX3 8NG UK

allanlambert@wlranda.com

www.wlranda.com

