Challenges in moving to 24/7 water supply in Aguas de Saltillo City, Mexico

This presentation was made by Nicolas Monterde Roca <u>nmonterde@interagbar.mx</u>

at the IWS Workshop "Intermittent Water Supply: Problems, Challenges, Misconceptions and Advances"

as part of the IWA Water Efficient 2017 Conference at Bath, UK, 18th to 20th July 2017.

The author hereby confirms that he is entitled to grant this permission for copies to be made available free of charge for reading and/or downloading from the LEAKSSuite Library website.

19th August 2017, transferred to LEAKSSuite Library August 2019

Challenges in moving to 24x7 water supply in Saltillo City, Mexico

Bath 18th July

The City of Saltillo

Automotive-manufacturing cluster

Situation before 2001

Major Problems Faced in 2001

- The municipality-owned water supply company was not profitable
- Overexploited aquifers
- High NRW rate, 55% of supplied water
- Little daily water supply coverage, less than 10% of the population had daily continuous supply
- Lack of technology and outdated management tools
- Lack of maintenance programs
- Well pumping stations needing hydraulic analysis studio.
- Outdated and poorly designed mechanical and electrical well pumping stations
- Outdated and deficient drinking water and sewer networks
- Poor quality materials used in domestic connections and secondary networks.

A Vicious Circle

Water supply perceived as the first municipal issue by the population

Creation of Aguas de Saltillo

"Aguas de Saltillo" was created in October 2001 under the **Public–Private Partnership** (**PPP**) scheme in order to solve the management problems.

Shareholders:

- Municipality of Saltillo (Public Partner)
- AGBAR (Private Partner). At present SUEZ.

Achievements to date

- Service substantially improved. Best rated public service
- Sustainable aquifers management
- Generates profits for stockholders
- Energy efficient and well engineered pumps stations
- Leakage reduction
- Implementation of a preventive maintenance program
- Implementation of the Quality Management Standard ISO 9001:2008 and OHSAS 18000
- In process of implementation of the Quality Standard ISO 17025

			19 St.
	2001	2016	2017
% Registered water/input volume	46.00%	57.12%	60.00%
% time system is pressurized	10%	69%	73%
# Service Connections	142,326	244,195	249,389
% Prompt payment	65%	98.70%	98.70%

System Overview (Dec 16)

Population	840,000
# Service Connections (main to 1st meter)	239,085
# Billed Properties (residential and non residential)	239,015
Bill Frecuency	monthly
% Metered Customers	100%
% Of customers with 24 H service	22.43%
Avg. Length of Underground Service Connection (m)	4.85
Length of Trunks Mains (Km)	103
Length of Distribution Mains (Km)	2,500.0
Avg. Operating Pressure (m)	30
% of time System is Pressurized	70.83
% of total mains subject to Active Pressure Management	25%

Av. time from location of mains leaks to shutoff or repair (Hours)	12	
Av. time from location of service connection leaks to shutoff or repair (Hours)	32	
Leaks on Mains (Number per 100Km/year)	50.9	
Leaks on Service Connections (Number per 1000 connections/year)	35.2	
% of System having active leakage control intervention each year	95	Focused mainly on Service Connections
Number of Water Treatment Plants	5	Chlorine addition
Water sources	Deep Wells	AVG 185 meters
Number of Wells	72	50 of them are non Urban Wells -> 91% of total production
Number of Pumping Stations	18	8% of total input volume (mainly operated by Gravity)
Number of distribution Reservoirs	110	

Production (m3/year)	51,502,671		
Energy Usage (Kwh/Year)	47,803,857		Aguas de Saltill
Avg. unit cost of water resource (MXN/m3)	0.849	0.0388 Eur/m3 0.0412 USD/m3	
Av. unit Cost of Production and Distribution	7	0.33 Eur/m3 0.35 USD/m3	

Units in Mexican Pesos (MXP) -> 1UDS = 20.7MXP

AVG Registered Consumption (m3/customer/month) TOTAL	M3	10.6
AVG Registered Consumption (m3/customer/month) DOMESTIC	M3	9.7
AVG Registered Consumption (m3/customer/month) BIG CONSUMERS (>150 m3 /Month)	M3	383
AVG Billing Price (\$= water&wastewater/m3 billed)	\$/m3	10.3
AVG Billing Price DOMESTIC USERS (\$= water&wastewater/m3 billed)	\$ /m3	8.2
AVG Billing Price BIG CONSUMERS (\$= water&wastewater/m3 billed)	\$ /m3	35.2

Monthly input and registered volume 2014 to 2016

Domestic Water Meter Installation

Two Factors that increase the apparent losses

- Low flows due to roof storage tanks (almost 100% users)
- Inclined Domestic Water meters installation
 35% of users wrong installation
 97% single or multijet

Most of the buildings are single or two story houses

Inlet typically 6 m above ground level Tests show 25% undermetering

Assessing under metering

Agsal Domestic Water Meter Laboratory

Error Tests

ries]

30 l/h

User Consumption Patterns

Dealing with reported Leaks

- Leaks on mains or service connections are usually reported by customers to the call center
- The call center translate the report to the zone manager (the network is divided in 5 operational zones)
- Typical shutoff times are 24h for burst in mains and 72h for burst on services connections

What happen if the leak is after the meter?

- If commercial software shows an alarm of possible leak, the customer is made aware by Aguas de Saltillo
- Aguas de Saltillo does not provide the repair service of leaks after the meter

Active leakage control

- Almost 95% of service connections are revised every year using electronic ground microphones
- 3 brigades of two people each
- In august 2016 Agsal implemented a methodology of leak detection by using 70 units of Permanet+ (leak noise loggers) and 8 units of correlating noise loggers
- This methodology required Agsal to build "listening" points on the network

Intermittent Supply

- Rotational or intermittent supply is the ordinary way to distribute water, it has not to do with seasonal demand or drought periods
- One of its causes is the operation of main reservoirs; they are filled one after another manually every day, so are the influence zones
- The wells stop according to there sustainable levels and on high demand electricity hours

- Improve System Efficiency, great losses both real and apparent
- Moving from IWS to Continuous Supply
- Advanced Active Pressure Control
- How to interpret night flows and assess changes in leakage
- Reduction of bursts on services connections and mains
- Better assessment of apparent losses and fraud

First Answer: Sectorization (Sep 2015)

To reduce NRW, need to reduce Real Losses by moving towards 24/7 supply

Initial plan was 200 DMA's

PMAs and DMAs Implementation Schedule 2016-2019

	2016	2017	2018	2019
# of DMAs Implemented (end of year)	100	150	200	200
# of DMAs monitored (end of year)	80	130	180	200
	\$ 1.43 M	\$1.43 M	\$ 1.43 M	\$ 1.43 M

Second Answer: Pressure Management (Apr 2016)

- Sectorization just a diagnosis tool
- Quick goals needed
- A mantra: "every metre counts"
- Squeezing the box

- Pressure Management
 - Cheapest
 - Preventive
 - Immediate impact
 - First logical action, always before the rest of them
 - Two benefits:
 - Burst frequency reduction
 - Reduction of leak flow

Aguas de Saltillo

An unexpected effect (for me)

The problem of bursts in services

Evolution of service frequency (hours per day)

Objetivo

14.70

14.70

14.70

15.00

15.00

15.00

16.00

16.00

17.00

18.00

19.00

20.00

16.20

How to break this vicious circle?

MasterClass (Nov 2016)

Emphasis to Pressure Management Zones as the foundation strategy

The recommended solution is to move to a 24/7 policy of continuous supply, but this is easier said than done.

IWS is like having two hearts attacks per day. (Allan Lambert)

17 h/user/day

Key Performace Indicator:

- Availability in h/user/day (zonal and system-wide)
- Track # and frequency of mains repairs per 100 km/day (system-wide)
- Track # and frequency of service repairs per 1000 conns/day (systemwide)
- Zonal pressure reduction with overnight pressure reduction
- Automatic N1 tests every Sunday morning
- Allan Lambert's new fast-track FAVAD approach for AZP vs leak flow rates

2016

'LEAKS' Suite of LEAKAGE EVALUATION and ASSESSMENT KNOW-HOW SOFTWARE									
CheckCalcs - a free software for identifying Leakage and Pressure ManagementOpportunities						It Interr	nittent		
CheckCalcs	HIC & LAMIC	Special for AgSal	08/12/2016	Mexico	Mex002	Mex002 © ILMSS Ltd Real Losses			alculate es 'when
OR KSHEET IS US	ED TO CALCULA	ATE NON-REVENUE WAT	ER, CURRENT AN	NUAL REAL LOSSES AND POTEN	NTIA LLY RECOVE	ERABLE	EREALL	syst	em
Colour coding:	Data entry	Essential data entry	Default Values	Calculated Values	ata from another Workshee pressuris			pressuris	ed' (wsp)
SIM PLIFIED IWA	A WATER BAL	ANCE CALCULATION	Ag	uas de Saltillo	Whole System		68.8%	100.0%	
Period from	01/01/2016	to	31/12/2016	=	366	Units	Ml/day	Lit/conn/d	Lit/conn/d
		VOLUME INPUT FR	OM YOUR OWN	NSOURCES	52288	M	142.86		
Enter data for		Water Impo	rted to this syste	em	0	MI	0.00		
your systemin		SYSTEM	INPUT VOLUM	E	52288	MI	142.86		
the yellow		Water Exported from this system				MI	0.00		
Cells.	WATER SUPPLIED TO THIS SYSTEM				52288	MI	142.86		
Check the		Billed Metered Consumption			29579	MI	80.82		
the purple cells		Billed Unme	tered Consump	otion	0	MI	0.00		
and change		NON-REVE	NUE WATER N	RW	22709	MI	62.05		
them if you	Unbilled Auth	orised Consumption	0.50%	of Billed Metered Consumption	148	MI	0.40		
have better		WATER LOSSES			22561	MI	61.64		
information	Unauthoris	sed Consumption	0.25%	of Billed Metered Consumption	74	MI	0.20		
w hich w ill	Customer M	etering Inaccuracies	19.00%	of Billed Metered Consumption	6938	MI	18.96		
improve the	APPARENT LOSSES - system with customer storagetanks				7012	MI	19.16		
reliability of the	CURRENT ANNUAL REAL LOSSES CARL			15549	MI	42.48	252	367	
calculation.	ion. UNAVOIDABLE ANNUAL REAL LOSSES UARL if pressurised 68.75% of time			1835	MI	5.01	30	43	
	INFRASTRUCTURE LEAKAGE INDEX ILI = CARL/UARL			8.47			8.47	8.47	

To move to 24/7 + 326 l/s NEEDED (28,166 m³/day)

AVAILABLE REDUCING LOSSES 433 I/s

DO WEHAVE ENOUGH WATER?

'LEAKS' Suite of LEAKAGE EVALUATION and ASSESSMENT KNOW-HOW SOFTWARE							_			
CheckCalcs - a free software for identifying Leakage and Pressure Management Opportunities										
CheckCalcs	HIC & LAMIC	Special for AgSal	08/12/2016	Mexico	Mex002	©ILN	ASS Ltd	Real Loss	aiculale as 'when	
OR KSHEET IS US	ED TO CALCUL	ATE NON-REVENUE WAT	FER, CURRENT AN	INUAL REAL LOSSES AND POTE	NTIALLY RECOV	ERABL	EREALL	svst	em	
Colour coding:	Data entry	Essential data entry	Default Values	Calculated Values	ata from anot	ata from another Workshee			pressurised' (w sp)	
SIM PLIFIED IW	A WATER BAL	ANCE CALCULATION	Ag	juas de Saltillo	Whole System			72.5%	100.0%	
Period from	01/01/2017	to	30/06/2017	=	181	Units	Ml/day	Lit/conn/d	Lit/conn/d	
		VOLUME INPUT FR	OM YOUR OWN	NSOURCES	26551	M	146.69			
Enter data for		Water Impo	orted to this system	em	0	MI	0.00			
your system in		SYSTEM	I INPUT VOLUM	E	26551	MI	146.69			
the yellow		0	MI	0.00						
Cells.	WATER SUPPLIED TO THIS SYSTEM				26551	MI	146.69			
	Billed Metered Consumption				15629	MI	86.35			
the purple colle	Billed Unmetered Consumption			0	MI	0.00				
and change		NON-REVE	ENUE WATER N	IRW	10922	MI	60.34			
them if you	Jnbilled Auth	orised Consumption	0.50%	of Billed Metered Consumption	78	MI	0.43			
have better	WATER LOSSES			10844	MI	59.91				
information	Unauthori	sed Consumption	0.25%	of Billed Metered Consumption	39	MI	0.22			
w hich w ill	Customer M	letering Inaccuracies	19.00%	of Billed Metered Consumption	3666	MI	20.25			
improve the	APPARENT LOSSES - system with customer storage tanks			3705	MI	20.47				
reliability of the	CURRENT ANNUAL REAL LOSSES CARL			7139	MI	39.44	220	304		
calculation.	UNAVOIDABLE ANNUAL REAL LOSSES UARL if pressurised 72.5% of time			955	MI	5.28	29	41		
	INFRASTRUCTURE LEAKAGE INDEX ILI = CARL/UARL				7.47			7.47	7.47	

To move to 24/7 + 240 I/s NEEDED (20,747 m³/day)

AVAILABLE REDUCING LOSSES 395 I/s

Pressure Management

248 Brisas Poniente (Dec 11 to Dec 18)

Weekly Inflow:	5 <i>,</i> 985 m³
Avg AZP:	11.68 m
Max AZP:	36.22 m
Supply time:9 h/o	day

Weekly Inflow:11,964 m³Avg AZP:15.33 mMax AZP:20.89 mSupply time:24 h/day

Pressure Management 247 Jardines Coloniales

247 Jardines Coloniales

ed | Datos de contacto | Condiciones de uso | Aviso legal | Política de cookies

- Continuous supply achieved from march
- Night pressure control automated
- Automatic night test on Sunday morning (2:00 to 7:00 a.m.):
 - Good set of readings at steady flow and AZNP
 - Roof tanks are full at this time
 - Other days of the week more variable

www.i2owster.com

Succeses and Lessons Learnt

- In fact it is POSSIBLE to move to 24/7
- Moving to 24/7 is more a process than a decision
- You should expect some initial problems:
 - Opposition to change (people used to work in a traditional way)
 - Temporary disruption of service during installations
 - Criticism of new policies
- When achieved 24/7:
 - It is possible to start controlling pressures
 - Burst frequencies start to decrease
 - Users start to perceive the benefits

NEXT STEPS

- Going on improving network efficiency. Recovering more water:
 - Advanced Active Pressure Control
 - Sectorization
 - Active Leakage Control
 - Infrastructure renewal
- Increasing availability by zones. Water recovered used to supply the next zone.
- Abandoning Valve opening and shutting off
- Looking for new sources in the Medium Term according with the development of the city