INTERMITTENT WATER SUPPLY: Ten Reasons why it should be Avoided Bambos Charalambous (<u>bcharalambous@cytanet.com.cy</u>)

This presentation was made by Bambos Charalambous at the Arab Water Week and Exhibition 'Shaping our Water Future' at The Dead Sea, Jordan in March 2017.

The author hereby confirms that he is entitled to grant this permission for copies to be made available free of charge for reading and/or downloading from the LEAKSSuite Library website.

18 August 2017, transferred to LEAKSSuite Library 21st August 2019

MANAGING WATER SYSTEMS WITHIN ARAB WATER WEEK FRAGILE ENVIRONMENTS IN THE ARAB REGION

INTERMITTENT WATER SUPPLY: Ten Reasons why it should be Avoided

BAMBOS CHARALAMBOUS CHAIR INTERMITTENT WATER SUPPLY SPECIALIST GROUP, IWA FELLOW OF THE INTERNATIONAL WATER ASSOCIATION (IWA)

INTERMITTENT WATER SUPPLY

Definition:

Intermittent Water Supply (IWS) refers to piped water supply service that is available to consumers less than 24 hours per day (Related terms often used: irregular, unreliable, inadequate, poor supply...)

Frequency of Intermittency:

- Regular Rationing schedule daily / every 2 days / etc..
- Seasonal due to increase in demand which could not be met (tourism, hot weather, etc.)
- Occasional related to source issues (lower yields / quality) deterioration / eternal pollution)

Does not relate to temporary cut-offs due to fixing of breaks

MAJOR CAUSES OF IWS

- Source scarcity insufficient quantity at the source exacerbated by climate change
- Growing demand-supply imbalance
- Poor management of systems high leakage & wastage, poor O & M practices, governance issues....
- Ageing infrastructure with high frequency of water mains failure
- Energy-Intermittent power supply

IWS – GLOBAL ISSUE

- MIDDLE EAST AND NORTH AFRICA: For about 75% of the population the supply is often intermittent
- AFRICA¹: It is estimated that <u>about 30% of urban water supplies</u> operate intermittently
- ASIA¹: Approximately <u>50% of the systems</u> operate intermittent
 SYSTEMS (SOUTH ASIA: practically all cities operate intermittently this is even considered standard water supply practice ...)
- LATIN AMERICA AND CARIBBEAN²: Over <u>60% of the population</u> receive rationed water supply

Source: 1- WHO & UNICEF 2- PAHO & WHO

IWS – GLOBAL ISSUE

Description	Population (billion)
Worldwide population	7.3
Population in High Income countries (with piped water on premises)	0.9
Population in Low and Middle Income countries	6.4
Population with piped water on premises in Low and Middle Income countries	3.2
Population with piped water on premises affected by IWS in Low and Middle Income countries	1.3

Source: B. Charalambous et al, "Dealing With The Complex Interrelation Of Intermittent Supply And Water Losses" IWAP 2017, ISBN 9781780407067

MENA REGION – CONTINUITY OF SUPPLY

MAIN IMPLICATIONS OF IWS

- Meter malfunctioning and accelerated wear and tear
- Customer meters may over-read (due to air)
- \succ Low supply pressures, particularly in high ground areas
- Water quality deterioration
- Customer dissatisfaction / complaints
- Water Wastage taps left open, tanks overflowing
- \succ High coping costs for customers (tanks, pumps, etc.)
- Increased main and service connection breaks

Source: B. Charalambous et al, "Dealing With The Complex Interrelation Of Intermittent Supply And Water Losses" IWAP 2017, ISBN 9781780407067

1. INCREASE IN LEAKAGE

May seem to be a water saving measure however in the long run **greater quantities of water will be <u>Iost through increased leakage</u>** and wastage compared to the quantities that may initially be saved

2. NETWORK DETERIORATION

Intermittent Water Supply - Ten Reasons why it should be Avoided

3. PIPE AND SERVICE CONNECTION BREAKS

2008 – 2009 Intermittent Water Supply (IWS)						
	Number of reported breaks					
Description	2007	2010	%			
	Before IWS	After IWS	increase			
Mains 14 / 100km		42 / 100km	200			
Service connections	15 / 1000 connections	30 / 1000 connections	100			

Results in a **substantial increase in the number of pipe bursts** in mains and service connections thus increased leakage.

Source: Water Board Lemesos, Cyprus

4. WATER QUALITY PROBLEMS-HEALTH HAZARD

Poor public service delivery, reflected especially in significant water and electricity shortages, are binding constraints on the population's quality of life. Safe drinking water is of crucial importance to the preservation of human health, especially among children

5. ADVERSE FINANCIAL EFFECT

<u>Cost to the utility for the 2 years (2008 – 2009) of Intermittent Supply :</u>						
Loss of revenue:						
➤reduction in sales – cost of water saved:	€ 300.000					
Additional operational expenses:						
staff overtime for opening / closing valv	es: € 365.000					
repairing additional reported breaks:	<u>€ 325.000</u>					
	€ 990.000					
Additional cost to the utility after Continuous Supply was established:						
Additional leakage($2010 - 2011$): $\pounds 1$.325.000					
Estimated cost of locating leaks:	150.000					
Estimated cost of repairing leaks:	<u>135.000</u>					
€1	.610.000					

Source: Water Board Lemesos, Cyprus

Has an **adverse financial effect on the water utility** resulting in lower water sales and higher costs due to additional O&M activities needed to run IWS.

6. CUSTOMER DISSATISFACTION - POOR LEVEL OF SERVICE

- Customer meters over-register (due to air)
- \succ Low supply pressures, particularly in high ground areas
- Water quality deterioration and health issues
- \geq High coping costs for customers (tanks, pumps, etc.)

7. FINANCIAL BURDEN ON THE CONSUMERS

8. NOT AN EFFECTIVE WATER DEMAND MANAGEMENT MEASURE

Water distribution input including losses in litres per capita per day

9. NOT AN EFFECTIVE INTERVENTION

	Year	System Input Volume	Customer Consumption
oard Lemesos, Cyprus	2007 Before Intermittent Supply	0% (base line)	0% (base line)
	2008 Intermittent Supply	-17,5%	-9,2%
	2009 Intermittent Supply	-9,1%	-8,9%
Source: Water Bo	2010 After Intermittent Supply	+12,8%	-1,2%

Is not considered an appropriate intervention to drought / water shortage

10. TAKES "1 HOUR" TO INTRODUCE BUT YEARS TO REVERSE.

While it is relatively easy to turn a 24x7 system to an intermittent supply, it is **extremely difficult to do the opposite**

BARRIERS TO CONTINUOUS SUPPLY

- Limited water quantities source limitations
- Reluctance to change we are ok as we are
- Poor or non-existent planning
- Insufficient funding and policy decisions
- No penalties for poor service
- Lack of water regulations
- There is no top-down initiative
- There is no bottom-up pressure
- Water is a state / municipal matter
- Mimicking 24x7 is OK for some (decision makers...)
- Poor awareness of options

IMPROVE IWS CONDITIONS – TRUNK / DISTRIBUTION MAINS PRESSURIZED 24/7

- Eliminate pipe refill time
- Reduce operational costs
- Reduce infrastructure damage

THANK YOU

Bambos Charalambous Director, Hydrocontrol Ltd Tel.: +357 99 612 109 Email: <u>bcharalambous@cytanet.com.cy</u>

